Using Gradient Features from Scale-invariant Keypoints on Face Recognition

نویسندگان

  • Shinfeng D. Lin
  • Jia-Hong Lin
  • Cheng-Chin Chiang
چکیده

As the individual identification, access control and security appliance issues attract much attention, face recognition applications are more and more popular. The challenge of face recognition is that the performance is mainly constrained by the variations of illumination, expression, pose and accessory. And most algorithms which were proposed in recent years focused on how to conquest these constraints. In this paper, an algorithm which combines Principal Component Analysis (PCA), Scale Invariant Feature Transform (SIFT) and gradient features to face recognition is proposed. The feature vectors invariant to image scaling and rotation are firstly extracted by SIFT with a different local gradient descriptor. And PCA is applied to the dimension reduction of the local descriptors for saving the computation time. Then the K-means algorithm is introduced to cluster the local descriptors, and the local and global informations of images are combined to classify human faces. Simulation results demonstrate that PCA-SIFT local descriptors are robust to accessory and expression variations and that these descriptors have better performance than other comparative methods. In addition, PCA-SIFT local descriptors have better computation efficiency than standard SIFT local descriptors because of the dimension reduction of the PCA projection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

Selection of distinctive sift feature based on its distribution on feature space and local classifier for face recognition

This paper investigates a face recognition system based on Scale Invariant Feature Transform (SIFT) feature and its distribution on feature space. The system takes advantage of SIFT which possess strong robustness to expression, accessory pose and illumination variations. Since we use each of SIFT keypoint as the feature of face and SIFT keypoints are very complicated in feature space, we apply...

متن کامل

Multiple Object Tracking Using SIFT Features and Location Matching

In recent, object recognition and tracking systems have been developed that use local invariant features from Shift Invariant Feature Transform algorithm. Most of them are implemented by distance matching of descriptor features between the reference and the next consecutive frame image. Among the matched keypoints generated from SIFT descriptor matching, there are some mismatched keypoints when...

متن کامل

3D SMoSIFT: three-dimensional sparse motion scale invariant feature transform for activity recognition from RGB-D videos

Human activity recognition based on RGB-D data has received more attention in recent years. We propose a spatiotemporal feature named three-dimensional (3D) sparse motion scale-invariant feature transform (SIFT) from RGB-D data for activity recognition. First, we build pyramids as scale space for each RGB and depth frame, and then use Shi-Tomasi corner detector and sparse optical flow to quickl...

متن کامل

Adaptive Principle Component Analysis to Improve Scale Invariant Feature Transform Matching for Face Recognition Applications

Image matching using feature extraction is an important issue in computer vision tasks. The main drawback of matching process is the bottleneck problem that rapidly appeared when the number of features increased. This paper produced an adaptive approach to improve Scale Invariant Feature Transform (SIFT) matching. The main idea is to increase the number of SIFT points by using Adaptive PCA in w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011